Exercise 2B

1 a i

ii Every element in set A gets mapped to one element in set B, so the mapping is one-to-one.
iii $\{\mathrm{f}(x)=12,17,22,27\}$
b i

ii Two elements in set A get mapped to one element in set B , so the mapping is many-to-one.
iii $\{g(x)=-3,-2,1,6\}$
c i

ii Every element in set A gets mapped to one element in set B , so the mapping is one-to-one.
iii $\left\{\mathrm{h}(x)=1, \frac{7}{4}, 7\right\}$

2 a

i One-to-one as each value of x is mapped to a single value of y
ii Yes, this mapping could represent a function.
b

i One-to-one as each value of x is mapped to a single value of y
ii Yes, this mapping could represent a function.

2 c

i One-to-many (see explanation in part ii)
ii Not a function.
Values of x which are less than a do not get mapped to a value of y. Values of x which are greater than a get mapped to two values of y.
d

i One-to-many (see explanation in part ii)
ii Not a function.
Values of x for which $-r<x<r$ get mapped to two values of y. Values of x for which $x<-r$ or $x>r$ don't get mapped to a value of y.
e

i One-to-one as each value of x (except for $x=b$) is mapped to a single value of y.
ii Not a function. The value $x=b$ doesn't get mapped anywhere.
f

i Many-to-one as there are two values of x which map to each value of y.
ii Yes, this mapping could represent a function.

3 a Substituting $x=a$ and $\mathrm{p}(a)=16$ into $\mathrm{p}: x \mapsto 3 x-2, x \in \square$ gives:
$16=3 a-2$
$18=3 a$
$a=6$

3 b Substituting $x=b$ and $\mathrm{q}(b)=17$ into $\mathrm{q}: x \mapsto x^{2}-3, x \in \square$ gives:
$17=b^{2}-3$
$20=b^{2}$
$b= \pm \sqrt{20}$
$b= \pm 2 \sqrt{5}$
c Substituting $x=c$ and $r(c)=34$ into $\mathrm{r}: x \mapsto 2 \times 2^{x}+2, x \in \square$ gives:
$34=2 \times 2^{c}+2$
$32=2 \times 2^{c}$
$16=2^{c}$
$c=4$
d Substituting $x=d$ and $\mathrm{s}(d)=0$ into $\mathrm{s}: x \mapsto x^{2}+x-6, x \in \square$ gives:
$0=d^{2}+d-6$
$0=(d+3)(d-2)$
$d=2,-3$

4 a $\mathrm{f}(x)=2 x+1$
i

ii One-to-one function as each value of x maps to a single value of y.

4 b $\mathrm{g}: x \mapsto \sqrt{x}$
i

ii One-to-one function as each value of x maps to a single value of y.
c $\mathrm{h}(x)=x^{2}$
i

ii Many-to-one function as there are four values of x which map to two values of y.
d $\mathrm{j}: \mathrm{x} \mapsto \frac{2}{x}$
i

4 d ii One-to-one function as each value of x maps to a single value of y.
e $\mathrm{k}(x)=\mathrm{e}^{x}+3$
i

ii Every element in set A gets mapped to one element in set B , so the mapping is one-to-one.

5 a i

ii Range of $\mathrm{f}(x)$ is $\mathrm{f}(x) \geq 2$
iii One-to-one function as each value of x maps to a single value of y.
b i

ii Range of $\mathrm{f}(x)$ is $\mathrm{f}(x) \geq 9$
iii One-to-one function as each value of x maps to a single value of y

5 ci

ii Range of $\mathrm{f}(x)$ is $0 \leq \mathrm{f}(x) \leq 2$
iii Many-to-one function as there are two values of x which map to a single value of y
d \mathbf{i}

ii Range of $\mathrm{f}(x)$ is $\mathrm{f}(x) \geq 0$
iii One-to-one function as each value of x maps to a single value of y

5 e i

ii Range of $\mathrm{f}(x)$ is $\mathrm{f}(x) \geq 1$
iii One-to-one function as each value of x maps to a single value of y

5 f i

ii Range is $\mathrm{f}(x) \in \square$
iii One-to-one function as each value of x maps to a single value of y

6 a Although $\mathrm{g}(x)$ is supposed to be defined on all real numbers, it does not map the element ' 4 ' of the domain to any point in the range. Hence $\mathrm{g}(x)$ is not a function.
$\mathrm{f}(4)=25$, so for each $x \in \square$ there exists a y such that $\mathrm{f}(x)=y$
Hence, $\mathrm{f}(x)$ is a function.
b

c i $\mathrm{f}(3)=4-3=1$
(Use $4-x$ as $3<4$)
ii $\mathrm{f}(10)=10^{2}+9=109$
(Use $x^{2}+9$ as $10>4$)

6 d

The negative value of a is where
$4-a=90 \Rightarrow a=-86$

The positive value of a is where
$a^{2}+9=90$
$a^{2}=81$
$a= \pm 9$
$a=9$

The values of a are -86 and 9
7 a

b There is no solution to
$10-x=43$ for $x \geq 0$
$\mathrm{s}(a)=43$ only when
$x^{2}-6=43$
$x^{2}=49$
$x=-7$
x cannot be 7, since
$s(x)=x^{2}-6$ for $x<0$

7 c The negative solution is where

$$
\begin{aligned}
& x^{2}-6=x \\
& x^{2}-x-6=0 \\
&(x-3)(x+2)=0 \\
& x=3 \text { or } x=-2 \\
& \text { As } x<0, x=-2
\end{aligned}
$$

The positive solution is where

$$
\begin{aligned}
10-x & =x \\
2 x & =10 \\
x & =5
\end{aligned}
$$

The solutions are $x=-2$ and $x=5$
8 a

b $\mathrm{p}(a)=50$
The negative solution is where

$$
\begin{aligned}
\mathrm{e}^{-a} & =50 \\
-a & =\ln (50) \\
a & =-3.91
\end{aligned}
$$

The positive solution is where

$$
\begin{aligned}
a^{3}+4 & =50 \\
a^{3} & =46 \\
a & =3.58
\end{aligned}
$$

The solutions are $a=-3.91$ and $a=3.58$

9 a

b Range of $\mathrm{h}(x)$ is $\{2 \leq \mathrm{h}(x) \leq 27\}$
c $\mathrm{h}(a)=12$
One solution is for the function
$h(x)=-2 x-6$
$\Rightarrow-2 a-6=12$
$\Rightarrow \quad a=-9$
The other solution is for the function
$\mathrm{h}(x)=\frac{5}{2} x+12$
$\Rightarrow \frac{5}{2} a+12=12$
$\Rightarrow \quad a=0$
The solutions are $a=-9$ and $a=0$

10

$$
\begin{align*}
\mathrm{g}(x)=c x & +d \\
\mathrm{~g}(3)=10 & \Rightarrow c \times 3+d=10 \\
& \Rightarrow \quad 3 c+d=10 \tag{1}\\
\mathrm{~g}(8)=12 & \Rightarrow c \times 8+d=12 \\
& \Rightarrow \quad 8 c+d=12 \tag{2}
\end{align*}
$$

(2) $-(1) \Rightarrow 5 c=2$

$$
\Rightarrow c=\frac{2}{5}
$$

Substitute $c=\frac{2}{5}$ into (1):
$3 \times \frac{2}{5}+d=10$
$\frac{6}{5}+d=10$
$d=\frac{44}{5}$
$11 \mathrm{f}(x)=a x^{3}+b x-5$

$$
\begin{array}{rlr}
\mathrm{f}(1)=-4 & \Rightarrow a \times 1^{3}+b \times 1-5=-4 \\
& \Rightarrow & a+b-5=-4 \\
& \Rightarrow & a+b=1 \\
\mathrm{f}(2)=9 & \Rightarrow a \times 2^{3}+b \times 2-5=9 \\
& \Rightarrow & 8 a+2 b-5=9 \\
& \Rightarrow & 8 a+2 b=14 \\
& \Rightarrow & 4 a+b=7 \tag{2}
\end{array}
$$

$$
(2)-(1) \Rightarrow 3 a=6
$$

$$
\Rightarrow \quad a=2
$$

Substitute $a=2$ in (1):
$2+b=1$
$b=-1$
$12 \mathrm{~h}(x)=x^{2}-6 x+20$

$$
\begin{aligned}
& =(x-3)^{2}-9+20 \\
& =(x-3)^{2}+11
\end{aligned}
$$

This is a \cup-shaped quadratic with minimum point at $(3,11)$

This is a many-to-one function.
For $\mathrm{h}(x)$ to be one-to-one, we must restrict domain to $x \geq 3$

Hence smallest value of a is $a=3$

